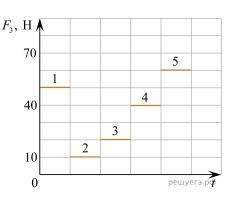
Пентрализованное тестирование по физике. 2011

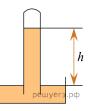
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


- 1. Физической величиной является:
- 1) секунда
- 2) килограмм
- 3) линейка
- 4) плавление
- 5) скорость
- 2. Установите соответствие между физическими величинами и учёными-физиками, в честь которых названы единицы этих величин.

•	 Фарадей Джоуль
В. Работа	3) Вольта

- 1) A1 **B3 B2**
- 2) А1 Б2 В3
- 3) A2 B1 B3
 - 4) A2 53 B1
- 5) A3 Б2 B1
- 3. По параллельным участкам соседних железнодорожных путей навстречу друг другу равномерно двигались два поезда: пассажирский и товарный. Модуль скорости пассажирского поезда $v_1=70~{
 m \frac{KM}{rt}},$ товарного – $V_2=38~{
 m \frac{KM}{rt}}.$ Если пассажир, сидящий у окна в вагоне пассажирского поезда, заметил, что он проехал мимо товарного поезда за промежуток времени $\Delta t = 18 \, \mathrm{c}$, то длина l товарного поезда равна:
 - 1) 0,40 km 2) 0,44 km
- 3) 0,50 км 4) 0.54 км
- 5) 0.60 km
- 4. Тело, брошенное вертикально вниз с некоторой высоты, за последнюю секунду движения прошло путь $s=45\,$ м. Если модуль начальной скорости тела $\,\upsilon_0=10\,\frac{{
 m M}}{c},\,$ то промежуток времени Δt , в течение которого тело падало, равен:
 - 1) 3.0 c


- 2) 4.0 c 3) 4.5 c 4) 5.0 c 5) 5.5 c

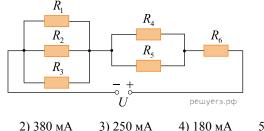
5. Тело двигалось в пространстве под действием трёх постоянных по направлению сил \vec{F}_1 , $\vec{F}_2, \ \vec{F}_3.$ Модуль первой силы $F_1 = 10$ H, второй — $F_2 = 35$ Н. Модуль третьей силы F_3 на разных участках пути изменялся со временем так, как показано на графике. Если известно, что только на одном участке тело двигалось равномерно, то на графике этот участок обозначен цифрой:

- 1) 1 2) 2
- 3)3
- 5)5

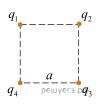
6. Запаянную с одного конца трубку наполнили керосином ($\rho = 820~\frac{{\rm K}\Gamma}{{\rm M}^3}$), а затем погрузили открытым концом в широкий сосуд с керосином (см.рис.). Если высота столба керосина h = 12.2 м, то атмосферное давление р равно:

- 1) 99.0 кПа
- 2) 99,5 kΠa
- 3) 100 κΠa
- 4) 101 κΠa
- 5) 102 κΠa
- 7. Если абсолютная температура тела изменилась на $\Delta T = 70 \text{ K}$, то изменение его температуры Δt по шкале Цельсия равно:

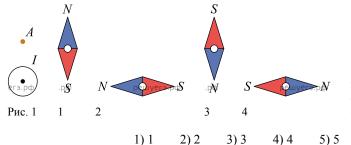
1)
$$\frac{273}{70}$$
 °C 2) $\frac{70}{273}$ °C 3) 343 °C 4) 203 °C 5) 70 °C


2)
$$\frac{70}{273}$$
 °(

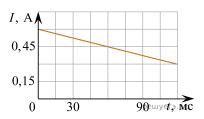
- **8.** Идеальный газ объемом $V_1 = 5.0$ л находился при температуре $t_1 = 27^{\circ}$ С. Если при изобарном нагревании температура газа увеличилась до $t_2 = 87^{\circ}$ C, то объем V_2 газа в конечном состоянии равен:
 - 1) 4.2 л
- 2) 6.0 л
- 3) 6.5 л 4) 7.0 л
- 5) 7.6 л
- **9.** В некотором процессе термодинамическая система получила количество теплоты O =35 Дж. Если при этом внешние силы совершили над системой работу A=30 Дж, то внутренняя энергия системы увеличилась на ΔU :
 - 1) 5.0 Дж
- 2) 30 Дж
- 3) 35 Дж
- 4) 65 Дж
- 5) 70 Дж


10. На рисунке приведено условное обозначение:

- 1) электрического звонка 2) гальванического элемента 3) амперметра 4) реостата 5) вольтметра
- 11. В электрической цепи, схема которой приведена на рисунке, сопротивления резисторов $R_1 = 80,0 \text{ OM}, R_2 = 120 \text{ OM}, R_3 = 80,0 \text{ OM}, R_4 = 270 \text{ OM}, R_5 = 30,0 \text{ OM}, R_6 = 48,0 \text{ OM}.$ Если напряжение на клеммах источника тока U = 21.0 B, то на резисторе R_5 сила тока I_5 равна:



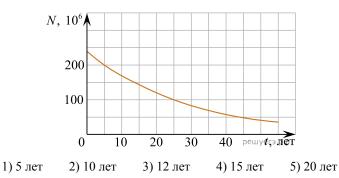
- 1) 450 mA
- - 3) 250 mA
- 4) 180 mA
 - 5) 110 mA
- **12.** Четыре точечных заряда $q_1 = q_2 = q_3 = 20$ нКл и $q_4 = -10$ нКл находятся в вакууме в вершинах квадрата, длина стороны которого a = 24 см. Потенциальная энергия W электростатического взаимодействия системы этих зарядов равна:


- 1) 17 мкДж
- 2) 20 мкДж
- 3) 25 мкДж
- 4) 30 мкДж
- 5) 44 мкДж

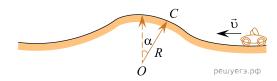
13. Прямой проводник с током I расположен перпендикулярно плоскости рисунка (cm.puc. 1). В точку A поместили небольшую магнитную стрелку, которая может поворачиваться вокруг вертикальной оси, перпендикулярной плоскости рисунка. Как расположится стрелка? Правильный ответ на рисунке 2 обозначен цифрой:

5) В точке A магнитное поле не создается, ориентация стрелки будет произвольная

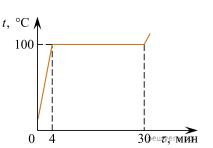
14. На рисунке изображён график зависимости силы тока I в катушке индуктивности от времени t. Если индуктивность катушки L = 95 мГн, то энергия W магнитного поля катушки в момент времени t = 60 мс была

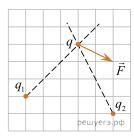

- 1) 4,5 мДж
- 2) 6,0 мДж
- 3) 9,6 мДж
- 4) 12 мДж
- 5) 17 мДж
- **15.** Звуковая волна в воздухе за промежуток времени $\Delta t = 2,5$ с проходит расстояние l =0.88 м. Если длина волны $\lambda = 53$ см, то период T волны равен:
 - 1) 1.5 c 2) 2.8 c 3) 4.5 c 4) 6.0 c

- 5) 7.5 c
- **16.** На дифракционную решётку, период которой d = 2,20 мкм, падает нормально параллельный пучок монохроматического света. Если угол отклонения излучения в спектре второго порядка $\theta = 30^{\circ}$, то длина волны λ световой волны равна:
 - 1) 550 нм
- 2) 600 нм
- 3) 650 нм
- 4) 700 HM
 - 5) 750 нм
- 17. Атом водорода при переходе с шестого энергетического уровня $E_6 = -6.02 \cdot 10^{-20}$ Дж) на третий ($E_3 = -2.41 \cdot 10^{-19}$ Дж) испускает фотон, модуль импульса р которого равен:

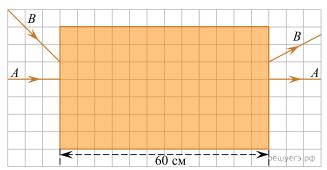

1)
$$7.03 \cdot 10^{-27} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$$
 2) $1.61 \cdot 10^{-27} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$ 3) $6.03 \cdot 10^{-28} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$ 4) $2.53 \cdot 10^{-28} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$ 5) $8.83 \cdot 10^{-29} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$

равна:


18. На рисунке изображён график зависимости числа N нераспавшихся ядер некоторого радиоактивного изотопа от времени t. Период полураспада $T_{1/2}$ этого изотопа равен:


- 19. Легковой автомобиль движется по шоссе со скоростью, модуль которой $\upsilon=15~\frac{\rm M}{\rm c}$. Внезапно на дорогу выскочил лось. Если время реакции водителя t=0,95 с, а модуль ускорения автомобиля при торможении $a=6,0~\frac{\rm M}{\rm c^2}$, то остановочный путь s (с момента возникновения препятствия до полной остановки) равен ... м.
- **20.** С помощью подъёмного механизма груз массой m=0,50 т равноускоренно поднимают вертикально вверх с поверхности Земли. Через промежуток времени $\Delta t=4,0$ с после начала подъёма груз находился на высоте h=8,0 м, продолжая двигаться, то работа A, совершенная силой тяги подъемного механизма к этому моменту времени, равна ... кДж.
- **21.** Камень бросили вертикально вверх с поверхности Земли со скоростью, модуль которой $\upsilon=20~\frac{{}^{\rm M}}{c}$. Кинетическая энергия камня равна его потенциальной на высоте h, равной ... м.
- **22.** Автомобиль массой m=1,1 т движется по дороге, профиль которой показан на рисунке. В точке C радиус кривизны профиля R=0,41 км. Направление на точку C из центра кривизны составляет с вертикалью угол $\alpha=30,0^o$. Если модуль силы давления автомобиля на дорогу в этой точке F=7,7 кH, то модуль скорости σ 0 автомобиля равен ... $\frac{M}{C}$ 0.

- **23.** В баллоне находится смесь газов: углекислый газ ($M_1=44$ $\frac{\Gamma}{\text{моль}}$) и кислород ($M_2=32$ $\frac{\Gamma}{\text{моль}}$). Если парциальное давление углекислого газа в три раза больше парциального давления кислорода, то молярная масса M смеси равна ... $\frac{\Gamma}{\text{моль}}$.
- **24.** Небольшой пузырёк воздуха медленно поднимается вверх со дна водоёма. На глубине h_1 = 80 м температура воды ($\rho=1,0\frac{\Gamma}{\text{см}^3}$) $t_1=7,0^{\circ}\text{C}$, на пузырек действует выталкивающая сила, модуль которой F_1 = 5,9 мН. На глубине h_2 = 1,0 м, где температура воды t_2 = 17°C , на пузырек действует выталкивающая сила \vec{F}_2 . Если атмосферное давление $p_0=1,0\cdot 10^5$ Па, то модуль выталкивающей силы F_2 равен ... мН.
- **25.** К открытому калориметру с водой (L=2,26 $\frac{\mathrm{M} \Delta_{\mathrm{K}\Gamma}}{\mathrm{K}\Gamma}$) ежесекундно подводили количество теплоты Q=58 Дж. На рисунке представлена зависимость температуры t воды от времени τ . Начальная масса m воды в калориметре равна . . . Γ .



26. На точечный заряд q, находящийся в электростатическом поле, созданном зарядами q_1 и q_2 , действует сила \vec{F} (см.рис.). Если заряд $q_1=17$ нКл, то модуль заряда q_2 равен ...нКл.

27. Зависимость силы тока I в нихромовом $\left(c = 460 \frac{\mathcal{I}_{K\Gamma}}{\kappa_{\Gamma} \cdot K}\right)$ проводнике, масса которого m = 32 г и сопротивление R = 1,4 Ом, от времени t имеет вид $I = B\sqrt{Dt}$, где B = 60 мА, D = 2,0 с⁻¹. Если потери энергии в окружающую среду отсутствуют, то через промежуток времени $\Delta t = 3,0$ мин после замыкания цепи изменение абсолютной температуры ΔT проводника равно ... К.

- **28.** Две частицы массами $m_1=m_2=0,800\cdot 10^{-12}$ кг, заряды которых $q_1=q_2=1,00\cdot 10^{-10}$ Кл, движутся в вакууме в однородном магнитном поле, индукция B которого перпендикулярна их скоростям. Расстояние l=100 см между частицами остаётся постоянным. Модули скоростей частиц $\upsilon_1=\upsilon_2=20,0\,\frac{\mathrm{M}}{c},\,$ а их направления противоположны в любой момент времени. Если пренебречь влиянием магнитного поля, создаваемого частицами, то модуль магнитной индукции B поля равен ... мТл.
- **29.** В идеальном *LC*-контуре происходят свободные электромагнитные колебания. Максимальное напряжение на конденсаторе контура $U_0 = 3.0$ В, максимальная сила тока в катушке $I_0 = 1.2$ мА. Если индуктивность катушки L = 75 мГн, то ёмкость C конденсатора равна ... нФ.
- **30.** На тонкую стеклянную линзу, находящуюся в воздухе за ширмой, падают два световых луча (см.рис.). Если луч A распространяется вдоль главной оптической оси линзы, а луч B так, как показано на рисунке, то фокусное расстояние F линзы равно ... см.

